COMPETITION GRADE LONG THROW DEEP BASS SUBWOOFER

UPC: 5060905111909

INSTALLATION POINTS

Failure to observe will invalidate warranty.

- O not run this subwoofer infinite baffle.
- Ensure that enough clean power is available. Do not rely on amplifier published information to set gain controls.
- Perform break in for several hours at medium level before use

DETAILED TECHNICAL DATA

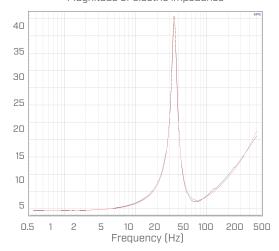
Power Handling (Per Driver):	3500 WRMS (@0%Thd
Nominal Impedance:	2+2 ohm
DC Impedance :	1.9+1.9 ohm
Voice Coil:	88.5 mm
Voice Coil Layers :	4 Layers Round Wire
Magnet:	230 mm x 60 mm
Magnet Type:	Y35 528 Oz Ferrite

BOX COMPATIBILITY

d)	Recommended Box Type:	Ported
	Example Box Size:	110Litres
	Optimal Frequency Response:	25>90Hz
	Example Port Cross Sectional Area (CSA):	28"2>37"2
	Recommended Tuning Frequency:	28>50Hz

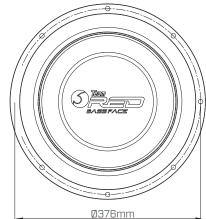
TEAM TIPS

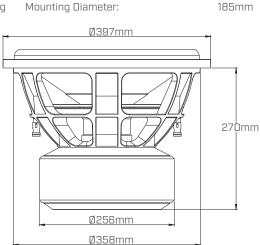
- This is an extreme subwoofer, designed for use to create extreme sound. Time spent building a solid, high quality enclosure will be rewarded with performance. Glue and screw all joint lines and seal with silicone afterwards.
- Pay attention to fixing the woofer to the enclosure. We recommend T nuts or captive nuts. We do not recommend the use of self tapping screws.
- Ensure to use a very thick baffle plate for the installation.
- Remember, the function of a subwoofer is to move air. If you can feel vibration in the structure that is effectively wasted energy. The best systems minimise wasted energy and move the most air.
- Remember, more cone area gives more SPL. There is a limit to what a given amount of cone area can produce.


TS PARAMETERS

Name	Value	Unit	Note
RE	0.44	ОНМ	Electrical voice coil resistance at DC
KRM	0.0010	OHM	Wright inductance model
ERM	0.90		Wright inductance model
KXM	0.0073	DHM	Wright inductance model
EXM	0.70		Wright inductance model
CMES	4946.07	UF	Electrical capacitance representing moving mass
LCES	4.19	МН	Electrical inductance representing driver compliance
RES	5.49	OHM	Resistance due to mechanical losses
FS	34.9	HZ	Driver resonance frequency
MMS	458.896	G	Mechanical mass of driver diaphragm assembly including air load and coil
MMD	431.141	G	Mechanical mass of voice coil and diaphragm without air load
RMS	16.848	KG/S	Mechanical resistance of total driver losses
CMS	0.045	MM/N	Mechanical compliance of driver suspension
KMS	22.04	N/MM	Mechanical stiffness of driver suspension

Name	Value	Unit	Note	
BL	9.615	N/A	Force factor BL product	
LAMBDA	0.000		Suspension creep factor	
QTP	0.558		Total Q factor considering all losses	
QMS	5.970		Mechanical Q factor of driver in free air considering RMS only	
QES	0.478		Electrical Q factor of driver in free air considering RE only	
QTS	0.443		Total Q factor considering RE and RMS only	
VAS	45.8342		Equivalent air volume of suspension	
MQ	0.391	%	Ref. efficiency (2 PI radiation using RE)	
LM	88.12	DB	Sound pressure level (SPL at 1M for 1W @ RE)	
LMOM	88.68	DB	Nom. sensitivity (SPL at 1M for 1W @ ZN)	
RMSE Z	4.76	%	Root mean square fitting error of driver impedance Z(F)	
RMSE HX	4.24	%	Root mean square fitting error of transfer function HX(F)	
SD	844.96	СМ2	Diaphragm area	
XMAX	23	mm	Total linear movement	


FREQUENCY VS IMPEDANCE


Magnitude of electric impedance

TECHNICAL DRAWING

Total Diameter:	215 mm	Mounting Depth:
Weight Approx. (Per a Driver):	34.42Kg	Mounting Diamet

132mm

185mm